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Universality of kÀ1 noise, the enstrophy cascade, and the large-scale atmospheric spectrum

Kamen N. Beronov
Graduate School of Engineering, Nagoya University, Nagoya 464-3806, Japan

~Received 28 April 1999; revised manuscript received 19 November 1999!

Direct numerical simulations of two-dimensional~2D! incompressible Navier-Stokes turbulence can model
large-scale atmospheric dynamics when driving and dissipation cover wide ranges of length scales. Natural
assumptions for the 2D energy balance lead to the robustk21 vorticity spectrum (k52p, length scale!
observed in the atmosphere. Scaling ink space is related to hyperbolicity of large-scale 2D flow in physical
space. The mechanism of this scaling has similarities with a recent model of dissipative self-organized
criticality.

PACS number~s!: 47.27.Eq, 94.10.Lf, 05.40.Ca, 05.65.1b
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I. INTRODUCTION

The kinetic energy spectrum of atmospheric motion sca
like k23 with the spatial wave numberk, for both longitudi-
nally and azimuthally averaged spectra, at lengthsc
(0.3–3)3103 km @1,2#. Structure functions and flux rate
evaluated from a large set of aircraft flight data show@2# that
this is consistent with an enstrophy cascade in tw
dimensional turbulence~2DT!. Kraichnan@3# has shown that
an inertial range dominated by such a cascade should dis
a k23 energy spectrum, or equivalently ak21 enstrophy
spectrum, where the enstrophy densityE5v2/2 andv is the
scalar vorticity in a two-dimensional flow. Kraichnan’s orig
nal idea was of a narrow band forcing with the enstrop
cascade occurring at wave numbers larger than those of
ing, and with ak25/3 spectrum determined by inverse ener
cascade at smaller wave numbers. But the atmospheric
ergy is known@2# to scale in exactly the opposite way, wit
k23 at smaller wave numbers andk25/3 at larger ones. More-
over, the assumption of an inertial range where both forc
and damping can be considered negligibly small in comp
son with inertial effects is rather questionable in the case
atmospheric motion, which is vigorously forced over
lengthscales involved in it.

A. Present results

In Sec. III it is argued on the basis of observations fro
extensive direct numerical simulations~DNS! of 2DT that a
k21 enstrophy range obtains robustly, even when the forc
includes or is included in the scaling range of wave numb
Such a range must still be ‘‘nearly inertial,’’ in the sense th
any forcing effects have to be small, but not at all negligib
when compared with the amount of enstrophy in the mo
on which they act. The equations and forcing scheme for
present DNS are described in Sec. II. The novelty is
forcing wave number band.

To explain this robustness and to show that it still rep
sents an enstrophy cascade to larger wave numbers as
borg @2# found from his data, the dynamical mechanism u
derlying the scaling is identified as the stretching of mate
volumes, which correlate strongly with vorticity in high
Reynolds-number two-dimensional turbulence. The idea
stretching is the generator of turbulence is very old; it
PRE 621063-651X/2000/62~1!/525~7!/$15.00
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reviewed briefly below. The important point in the prese
case is that alinear theory is sufficient, without any linear
izing assumptions to be made. This seems unusual in tu
lence theory. All relevant theoretical arguments found in
literature are collected and supplemented in several asp
in Sec. IV. A review of 2D DNS articles in Sec. VI offer
further justification of the assumption of linear interactio
between large-scale strain and small-scale vorticity, and s
gests that thek23 scaling of the enstrophy cascade towa
small scales and thek25/3 scaling of the energy cascade fro
those same small scales can coexist as if they were line
independent fluxes. Such a picture seems even more unu
in turbulence theory, despite the long recognized ‘‘nonloc
ity’’ ~in wave number space, or ‘‘locality’’ in physical space!
of 2DT transfer processes.

The ‘‘universality of k21 noise’’ has recently attracted
much attention in the theory of dissipative self-organiz
critical systems~DSOCSs!. A close correspondence is esta
lished in Sec. V between the linear aspects in the evolu
of spectra in 2DT and in a recent more abstract DSOC mo
system, which also displays robustk21 scaling. It can there-
fore be said that the atmosphere of our planet is yet ano
example of that universality.

B. Relation to previous results

The two key points in the explanation ofk21 scaling are
~1! nearly linear dynamics of small-scale vorticity with re
spect to advection by 2DT velocity and~2! dominance of
layerlike structures at small spatial scales. The latter is ill
trated in Fig. 1, which is a vorticity snapshot from one of t
present DNS. The importance of filamentation in 2DT w
noticed long ago in DNS of atmospheric dynamics mod
@1#. It has been recognized as the mechanism of enstro
cascade by Batchelor@4# and Kraichnan@3#. ~They have con-
sidered it important in 3D turbulence as well@5,6#.! DNS of
2DT @7,8# at higher-resolution (40962) than used here, bu
forced at the lowest few wave numbers~which is the cur-
rently standard setup!, have produced ak21 enstrophy spec-
trum, over roughly one octave of wave numbers. Gotoh@8#
noted the massive presence of layerlike vorticity structur

Both 2DT theory and DNS related to enstrophy casca
and thek21 range assume forcing over a band of wave nu
berskF5O(1) where the smallest resolved wave number
525 ©2000 The American Physical Society
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526 PRE 62KAMEN N. BERONOV
DNS kmin51 and dissipative-scale wave numberkd@1. The
problem with this classical forcing is that it insists on t
existence of an inertial range of wave numbers, where fo
ing and damping can be neglected. So far it has been sh
that a k21 scaling obtains only under such conditions. A
already noted, these restrictions are both too strong and
unrealistic for the atmospheric case.

The classical theory of isotropic turbulence is presen
entirely in Fourier space, so it can reflect the importance
coherent structures in physical space only through spe
scalings like thek21 one studied here. Batchelor’s thre
dimensional passive scalar scaling theory@5# and later Kra-
ichnan’s theory of random advection of a passive scalar@9#
in arbitrary dimension, which will be adapted here to d
scribe the 2D vorticity scaling, come in a representation t
employs both spectral and physical space, with statistica
guments implied in the transition between them. At the ba
of these theories is the concept of filamentary small-sc
structure which results from average stretching. Batchelor@5#
assumed nonzero average large-scale strain to derive thek21

scaling for a passive scalar spectrum in the convect
dissipative range, while Kraichnan showed that stretch
occurs on the average even if the average strain vanishes
find that in 2D Kraichnan’s result can be obtained even w
out assuming isotropy, so it extends to, e.g.,b-plane turbu-
lence.

Even if it vanishes on the average, the velocity strain
2DT divides the flow into regions of elliptic and hyperbol
large-scale flow. A comment on the role of the former
given in Sec. VI. The latter has special significance in 2D
A converging large-scale flow induces strong vorticity g
dients ~filamentation!; the gradients then induce large-sca
shear. This leads us to the oldest models of frontogen
@10#, which consider instabilities in a 2D simple shear
stagnation flow. Such large-scale motions then sustain
otherwise three-dimensional and spatially localized mec

FIG. 1. Instantaneous vorticity in runM ~see the middle bold
line in Fig. 2 and Table I!.
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nism of frontogenesis. A set of exact solutions@11# for vor-
ticity gradients driven by large-scale stagnation flow allo
more rigorous modeling of filaments in the present ‘‘ra
domly advected vorticity’’ variant of Kraichnan’s theory.

II. DYNAMICAL MODEL

Results reported here are for quasigeostrophic~QG!
b-plane scalar vorticity dynamics. In the QG approximati
@12# the large-scale height-averaged motions are small de
tions from a global balance between atmospheric pres
and the Coriolis force due to rotation of the Earth. When
largest scales of interest are of order 103 km, the Coriolis
term can be linearized into ab-term. A random force over
somebroad band of spatial frequencies crudely models t
cumulative effect of a multitude of different factors, e.g
convection, gravity-wave instabilities, topography. A line
damping term models the combined effect of all dissipat
mechanisms effective at the numerically resolved sca
e.g., boundary layer friction or radiation. The nonlinear d
namics immediately generates scales below the resolv
ones; this flux is disposed of by an arbitrarily chosen hyp
viscous term. The dynamics over a domain periodic in e
of the spatial coordinatesx1 andx2 is governed by

@] t1n~2¹2!1v1]11v2]2#v5bv21 f , ~1!

~v1 ,v2!5~]2 ,2]1!~2¹2!21v, ~2!

] t f ~x1 ,x2 ,t !52g f 1g~x1 ,x2 ,t !, ~3!

where ¹25]1
21]2

2; the damping modeln(L)5n01nmLm

has constantn0 ,nm.0; the order of~hyper!viscosity m>1
is integer. The random stirring forcef follows a popular
model@13#: The Langevin equation~3! with memory due to
the damping factorg.0 is driven by a Gaussian white nois
g. When integrating numerically with time stepdt, relevant
parameters are the forcing range boundskb,ke , a normal-
ized forcing amplitudeg05^g&/g, and a memory factorg1
512dt g.

The system~1!–~3! is a rather general example of anin-
compressibleNavier-Stokes-liketwo-dimensionaldynamical
system. It reproduces some key features of global-scale
mospheric dynamics:~1! dominance at the largest scales
zonal flow@14# due to theb-term, ~2! filamentation, and~3!
the k23 energy spectrum scaling, which is our subject he

III. NUMERICAL RESULTS

We now argue that, in order to predict an enstrophy~or
passive scalar! cascade and its direction one needs to ver
only the following conditions:~1! dominance of kinetic en-
ergy contentover its input/output rate, and~2! conservation
of the scalar on each fluid particle by the nondissipative a
unforced dynamics. Clearly, condition~2! is satisfied by Eq.
~1!; it is specific for 2D systems. Condition~1! is weaker
than requiring an inertial range; it allows forcing and dam
ing anywherein physical and wave number space, as long
redistribution of fluxes by inertial effects is fast.

Our main numerical result is the observation from DN
that a nearly statistically steady state with well-definedk21

enstrophy spectrum obtainsalwayswhen condition~1! holds.
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PRE 62 527UNIVERSALITY OF k21 NOISE, THE ENSTROPHY . . .
Here ‘‘well defined’’ means up to two decades ink, for 5122

spatial resolution~ @7,8# report smaller ranges at higher res
lution!. Technically, condition~1! implies two restrictions:
~1! that the initial enstrophy spectrum falls off atk@1 faster
than k21, and ~2! the forcing amplitudê g& ~which is the
same at any wave number for the scheme used here! for ^ f &
is small compared with the enstrophy content atk5O(1).

Independence of forcing details and of the requirement
an inertial range has been verified by obtaining the sa
scaling, after transients of nearly the same duration, from
large variety of run parameters: the damping model and fo
ing ‘‘memory time’’ were varied, and forcing was applied
one ortwo bands, with amplitudes selected nearly at will, b
independent ofk in each band. Different forcing bands we
used: ~1! only at low wave numbersk5O(1) ~classical
case!, or ~2! only at high wave numbersk5O(kd),1 or ~3!
only in a narrow band of wave numbers 1!k!kd ‘‘in the
middle’’ of the resolved range, or~4! over nearly thewhole
rangeof resolved scales~this case is qualitatively closest t
modeling atmospheric dynamics!.

Initial vorticity fields were randomly generated to mat
one of a few prescribed initial spectra, all dominated
large-scale motions. A substantial number of runs w
needed to explore the portion of parametric space spec
in the upper half of Table I. Details about this paramet
study will be omitted, since only the qualitative result is
interest here: Thek21 scaling results in all cases in whic
both forcing and damping remain below some empiri
threshold, which is close to the upper bounds onn andg0 in
Table I when initial energies areO(1).

To illustrate the qualitative independence of the final o
come from the forcing details, the spectral evolution fo
few representative runs is shown in Fig. 2. Forcing was
plied at different wave number bands (S: extreme small-
scale narrow band,M: moderately small-scale narrow ban
A: broadband!. The classical forcing case is omitted. The
three runs were started from the same initial field, with e
ergy concentrated aroundk54, and advanced with the sam
kind of hyperviscosity. Table I lists the parameter values

The universality ofk21 scaling has now to be explaine
without reference to an inertial range, becausen0.0 for all
k, and DNS have shown that the location and width of
forcing band is of no relevance and may overlap with

1The high-k forcing scheme is traditionally used to produce t
k25/3 energy scaling of the inverse 2DT cascade, and not thek23

energy scaling of the forward enstrophy cascade as done here
crucial difference is that, to simulate an inverse cascade, an in
field is picked up with ‘‘insufficient’’ energy or none at all.

TABLE I. Parameter ranges used in DNS.

b n0 nm m g0 g1 kb ke

Minimum 0 1024 1021 1 1024 0 1 4
Maximum 10 1021 103 12 0.4 0.99 220 250

Run A 0 231023 1 10 1022 0.83 112 225
Run M 0 1021 40 10 1021 0.99 112 125
Run S 0 1024 10 10 1021 0.83 220 225
r
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scaling range. The idea that small-scale vorticity is advec
in 2D similarly to a passive scalargoes back at least to
Taylor ~for a recent review and original numerical emplo
ment of this idea, see@15#!. For the cases of nearly invisci
vortex merger, decaying turbulence, and wave numb
above the forcing range in a narrow band-forced 2DT w
strong input, i.e., in violation of restriction~2!, detailed nu-
merical verification has been given@16#. Our present results
suggest that in a statistically quasi-steady-state satisfying
strictions~1! and ~2!, vorticity is advected in that way atall
wave numbers, even if forcing isnot narrow band.

IV. ADVECTION OF SMALL-SCALE VORTICITY

Here we adapt Kraichnan’s theory of random advection
passive scalars@9# to the advection by 2DT of any scala
conserved on fluid elements. In the inviscid limit, vortici
~not only its small-scale part! is such a scalar. Kraichna
considers advection by a white-noise velocity field of ar
trary ~integer! dimensionD>2, and derives thek21 scaling
on the basis of several assumptions, but without referenc
nonzero average strain. He first shows thatisotropy together
with incompressibilitylead to positive average stretching
material lines, although the strain tensor vanishes on the
erage. Therefore, material elements are stretched, on the
erage, into ‘‘thin sheets’’ of dimensionD21. He then intro-
duces a convenient but arbitrary model of the cross-sectio
profile of the scalar gradient across those sheets, choo
them to correspond to an input centered at a fixed w
number, and then studies the time evolution of his mod
For an ensemble of such sheets, and using the ti
dependent average and dispersion of the line stretching
he then computes the spectrum in a way similar to Bat
elor’s @5#. Here we have to relax the requirements that
velocity be isotropic, that it be white-noise ord correlated in
time ~and the related time dependence of line stretching
tistics!, and that vorticity input have a fixed characteris
length scale. The arbitrary model of filamentary structure
to be replaced by one that is a solution to the dynam
equations.

he
al

FIG. 2. Evolution of enstrophy spectrum in runsS ~top!, M
~middle!, andA ~bottom!. Thick lines: initial time~dotted! and latest
record~solid!. Data are compensated~horizontal lines correspond to
k21) and vertically shifted by arbitrary rescaling factor
1023(S),7.5(M ), 103(A).
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528 PRE 62KAMEN N. BERONOV
A. Average stretching by random advection

Kraichnan’s derivation employs in an essential way
white-noise assumption on the velocity field, which is clea
irrelevant as a model of two-dimensional motion, who
spectrum is dominated by large-scale modes. His comm
on this point is a reference to a proof for more general s
tistics, given earlier by Cocke@17#. The proof is only for
D53; it uses incompressibility and isotropy. Below follow
a sketch of its 2DT analog needed here.

A material line elementd l (0), when advected for a time
interval t by an incompressible 2DT flow, when viewed in
Lagrangian frame moving with its center, appears map
into d l (t)5Ud l (0). Here det(U)51 and W5UTU is a
symmetric matrix with eigenvaluesw21,w.0. Transition
from the Lagrangian frame to the orthogonal eigenvec
frame ofW is a solid rotation, determined in 2D by a sing
angle u. The analog of Cocke’s Eq.~5! for 2D is l 2

5ud l (t)u2/ud l (0)u25(cosu)2w1(sinu)2w21. The logarith-

mic stretching ratem̃52 log(l2)/2 can be bounded by notin
that 2 log is a convex function: 2m̃>(cosu)2log(w21)
1(sinu)2log(w); equality impliesw51.

Now consider anensembleof line elements. Since an
d l (0) is equally probable with its copy rotated b
p/2, ^ logw&5^log(w21)&50. Thus l5^m̃&.0 when the
standard deviations(w).0. ForD>3 there are severalw’s.
In order to have the lower bound onm̃ vanish on the average
one integrates with respect to severalu ’s, then averages, the
assumes isotropy to get all^ logw&’s equal. ForD52 there is
onew and isotropy is not required.

This is corroborated by the well-known fact thatb-plane
turbulence also producesk21scaling. In the present series o
DNS, results similar to those in Fig. 2 were also obtained
a b effect comparable to the total initial energy, again f
different forcing bands and other run parameters.

B. Thin sheets

Kraichnan’s next assumption@9# is that the characteristic
scales of the spatial variation of average strain are m
larger than the average thickness of the vorticity she
Therefore a small-scale fluctuation with scalar variance sp
trum @cf. his Eqs.~3.4! and ~3.5!# given at time t50 by
Ep(ap ,b0 ;k,0)5apb0f p(kb0), with characteristic cross
sectional scaleb0 and amplitudeap determined by the nor
malization *0

` f p(k)dk51, will keep its shape nearly un
changed while adjusting its characteristic lengthb(t)
5 l (t)b0 according to the experienced strain histo
Ep(k,t)5apb fp(kb). For an infinitesimal material line ele
ment d l (t) centered atx(t) and moving in a strain field
S(x,t), that history is represented bym̃(t)5*0

t S„x(t),t…dt.
So far, only incompressibility and the separation of sca
between strain and vorticity were assumed, and only a sin
‘‘thin sheet’’ was considered.

To estimate correctly thek21scaling range in Eqs.~5! and
~6! below, one needs to know what are the actual typi
cross-sectional profiles. Kraichnan assumed the form
sheets to besinusoidal. Although the scalar advection prob
lem is linear and so any profile is admissible as input
seems natural to focus on filaments having their cross
tions spatially localized and compatible with the flow d
e
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namics. The filamentation of vortex blobs continues un
they are so thin that further stretching is countered by v
cosity. Their ‘‘natural’’ shape can be approximated b
dissipative-scale solutions similar to the Burgers vortex tu
and layer solutions, which are popular models for filame
tary ~tubelike and layerlike! vorticity structures abundant in
three-dimensional turbulence.

Here follows a summary of the derivation in@11#. The
first step is to findsteady statesolutions describing the exac
balance between~a! large-scale strain, modeled by a stagn
tion flow, (u,v)5S(2x,y) in local coordinates, and~b! dis-
sipationn(2¹2). In the solutions, the profile of sheets is
function only of their cross-sectional coordinate, align
with the directionx of compressional strain. In 2DT, stead
statevorticity layerscannot be found. A ‘‘stretched vector’
field is needed as the analog of 3D vorticity. This turns ou
be theLaplacian of velocity. Steady profilesh(x) for that
component of the field which is along the direction of po
tive strain are exact analogs of the Burgers vorticity lay
solutions in 3D. For Newtonian viscosity,h(x) is Gaussian.
For m.1 it is even more localized in Fourier space, a
oscillatory ~but not sinusoidal! in x space, with algebraic
decay atuxu→`.

In the next step, these steady profilesh@n#(x) are used to
construct self-similar solutions, which model the process
stretching as adjustment, exponential in time, of their am
tude and length scale until their cross-sectional scale s
rates atO(kd

21) wherekd
225n/l. Clearly, such solutions can

be disrupted by a dissipative-scale forcing, as can be the
with atmospheric dynamics. Moreover, the time to reach
steady state depends on the kind of small-scale dissipa
Therefore, no universal behavior can be expected
dissipative-scale dynamics. In any case, the vorticity
stretched into stripes of various thickness, with sharp bou
aries of thicknessO(kd

21).

C. Ensembles

Following Kraichnan@9# again, consider an ensemble
filaments created with thesame shapeat thesame time, but
with varyinga andb0, and at differentxW (0). Averaging over
such an ensemble requires knowledge about the distribut
of the initial parameters and of strain histories. In the case
forcing in a narrow band and with fixed amplitude, which
relevant to some of the DNS reported above, one may
proximately assume uniform distributions over narrow int
vals for both a and b0. The distribution densityP̃(m̃) is
unknown; Kraichnan postulated it to be normal. Recall2 that
* P̃(m̃)dm̃5l.0, and rescalem̃5lm, so P̃→P. If sheets
in the ensemble are statistically independent, their total c
tribution to the spectrum is approximately

^apb0&EsE~ap!sE~b0!^Ep~1,1;k!&S .

2Steady state turbulence implies time-independentP(m). Kraich-
nan’s @9# focus is the evolution of single material line statistics,
a time dependence of^m& appears in his analysis; his addition
white-noise assumption gives^mW&5tl0 ands(mW)5t1/2s0 with
constantsl0 ,s0.0.
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PRE 62 529UNIVERSALITY OF k21 NOISE, THE ENSTROPHY . . .
SubscriptsE,S denote averaging respectively over the e
semble of sheets and over the total stretching of mate
lines l 5elm. The latter has its probability density complete
determined by the~unknown, centered! density P of m:
PS( l )5P(m2l)(dl/dm). Denoting bp5^b0&E ,
^Ep(1,1;k)&S'*elm f p(elmkbp)P(m2l)dm. It remains to
average over the distribution of admissible shapesf p , and in
the case of abroadband forcing, over input scalesbp
weighted by corresponding forcing amplitudes. Irrespect
of the probability measures arising in these two integrati
over distributions of filament parameters, there can be fo
an approximate dependenceH on the self-similar profile
shapesf p and on the parametrization of sheets based onf p ,
such that

^E~k!&'E elmH~k elm!P~m2l!dm. ~4!

Kraichnan avoided in his analysis the two averaging st
discussed here, by insisting on a single-k forcing ~fixed b0),
and on a fixed~sinusoidal! form of f p .

The prevailing population off p’s would consist of ‘‘thin
sheets,’’ well approximated by the Burgers-vortex-layer ty
of solutions discussed already. Each of them, and therefoH
as well, will have a Gaussian or faster falloff ink. With z
5kelm andD5 log(z)2log(k)2l2,

^F~k!&'~lk!21S E
0

`

P„D~z!/l…H~z!dz D . ~5!
d
’
f

n

o

-
al

e
s
d

s

e

The integral above may be approximated
P(0) *0

`H(z)dz if uD(hHkd)u!ls(m), wherehH5O(1) is

large enough, sayhH55, in order that both*hH

` ĥ(z)dz and

*0
1/hHĥ(z)dz are negligible whenĥ(z) is the Fourier trans-

form of any of the steady profilesh(x). Then the integral in
Eq. ~5! has negligiblek dependence, and ak21 scaling ob-
tains, approximately over the wave number range

kHe2ls(m)!k!kHels(m), kH5e2l2
kd~l,nm!. ~6!

Evaluation of the average and dispersion of the logarithm
stretching of material lines in 2DT is beyond the scope of
present article. Qualitatively,s(m) grows if the energy-
containing range@k5O(kE), where kE is the peak of the
spectrum# of the velocity spectrum shifts to larger length
One may conjecture a scaling law log(s)}log(kE /kd), expect-
ing s(m)@1 in 2DT.

V. RELATION TO A DSOCS MODEL

The QG dynamical model system studied so far was s
to produce ak21 spatial spectrum for the advanced fieldv
under ‘‘mild’’ forcing. This behavior can now be compare
with a forced DSOCS model system@18# that also produces
k21 spectra under a rather general setup. The evolution r
for the one-dimensional version of that model can be rec
as follows:
a~m,b1db,0!5ed~m! f ~b!db1 lim
t→`

a~m,b,t !, ~7!

a~m,b,t1dt!2a~m,b,t !

dt
52nE Pa~m,b,t !1

Pa~m1dm,b,t !22Pa~m,b,t !1Pa~m2dm,b,t !

2/~12nE!
. ~8!
f
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Here d(0)51 but d(m)50 for m>1; Pa5a if 0<a,e0
but Pa50 otherwise;e0!e!1 andnE,1 are positive con-
stants. The random forcef was chosen uniformly distribute
over @0,1!; it is effective only at one end of the ‘‘lattice’
m50,1,2, . . . ,M@1, so there is a predefined ‘‘direction o
propagation’’ for Ê(b)5(ma(m,b,`) called ‘‘energy’’ in
the model. Advancement inm and then inb is effected in
discrete steps, fixed atdm5db51. Fourier transform of
a(m,b,0) in b gives spectral densitiesE(m,k). Numerical
experiments@18# showed that all cases withnE>0.01 were
found to scale asE(k);k21. The explanation offered in@18#
was based on the observation that the spectrum form@1 and
for any fixed m scales likeE(m,k)'em l H(k em l) with
constantl.0. Note that this is the form of the functio
whose expectation is given by Eq.~4!. No explanation for
such an asymptotic form was given, only fits forl from
simulation data@18#. Assuming that(mE is dominated by
these m@1 contributions, E(k)'*E(m,k)dm
'(kl)21*H(z)dz. Our Eqs.~5! and ~6! imply the same,
whenP(0)51. Enstrophy in our case is clearly the analog
DSOCS ‘‘energy.’’
f

Relaxation by Eq.~7! can be interpreted as straining o
material elements or vorticity patches~blobs!. Blobs can be
assumed to appear initially with no preferred shape and
entation, and with average aspect ratio close to 1. Ifn0.0,
the vorticity associated with each blob decays. As foldi
occurs near stagnation points, filaments can be lumped
statistical purposes, into blobs of larger characteristic s
and smaller aspect ratio. Thus well-stretched blobs ‘‘vanis
at a rate;e while unstretched blobs are ‘‘generated’’ at
similar rate atm50. Equation ~7! remains formally un-
changed after Fourier transformation (b→k). When dm,dt
→0 and (12nE)}m1/2, and if the effect ofP can be ne-
glected, it represents a linearly damped diffusion proce
This is a direct analogy of Kraichnan’s stochastic diffusi
of material elements~blobs! ‘‘created’’ with characteristic
length scaleb. P prevents diffusion and decay of blobs wit
very weak vorticity. This means sustaining a weak multip
cative forcing of 2DT, i.e., modeling the weak backgrou
turbulence which does not belong to coherent vortices
vorticity layers. DNS with weak broadband forcing hav
shown that it is sufficient to supportk21 scaling in 2DT. In
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summary, a 2DT analog ofnE should lump together thre
small parameters: 1/s(m),n0, ande.

A naive interpretation of Eq.~7!, admissible only when
2DT forcing is narrow band, is to useb as a label of a ‘‘slow
time,’’ as originally meant in the DSOC model, and not f
injection length scale. This can be associated with evolu
of spectra, as in Fig. 2, which occurs on a time scale s
compared with the exponential thinning of layers. Not on
the restriction on forcing range, but also relating tempora
spatial spectra, are problems with this interpretati
Whetherb@1 means time or length, it can be associa
with a large energy available ina(b). In the m@1 range,
assumed decisive for the spectrum, no energy is added
Pa50 becomes important; a nearlyb-independent~‘‘quasi-
steady’’! state can be expected there. Changes enforce
Eq. ~7! will therefore be relatively small whenb,m@1—an
assumption strengthened bye!1, and analogous to cond
tion ~1! in the 2DT discussion. A linear response to forcin
a(m,b,`)2a(m,b,0)5A(m)db, is expected in that param
eter range; it corresponds to the approximation by pas
scalar dynamics of the evolution of vorticity blobs in 2D
Adding 2a(m,b1db,`) on both sides of Eq. 7, then takin
db→0 and Fourier transforming, leads toik E(m,k)
5Â(m). Thus,k21 scaling may follow from Eq.~7! without
necessitating the particular form of Eq.~8!. But then the
analogy with turbulent advection in 2D would be lost.

VI. CONCLUDING REMARKS

The offered explanation ofk21 scaling is based entirely
on consideration of vorticity filaments~thin stripes!. It may
seem surprising that the coherent vortices~CVs! that have
attracted so much attention in the study of 2DT are allow
to contribute only indirectly, if at all, by sustaining, in th
gaps between themselves, hyperbolic flow regions wh
filaments are stretched. In Kraichnan’s theory large-sc
strains, and thus CVs, are not required. The DNS discus
above~see also@4, Fig. 3#! showed that CVs may not dom
nate the flow, whetherb50 or not, and ak21 scaling will
still hold under restrictions~1! and~2!. Even ifb50, the CV
contribution to the spectrum for wave numbers above
energy-containing range is negligible: Ohkitani@19# showed
that the total contribution from regions with elliptic flow
including all CVs, scales ask22.

The present article claims the existence of statistica
steady states withk21 enstrophy scaling over the full rang
of wave numbers. In particular, the enstrophy cascade sh
be sustainable by a small-scale forcing, which seems sur
i-
.
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ing. This implies the presence of an inverse cascade of
ergy from the forcing range toward the largest scales wh
are only damped linearly (n0.0). But this cascade is no
allowed to show up in spectra or in averaged nonlinear tra
fer functions, i.e., the usually observedk25/3 scaling is to-
tally overwhelmed by filamentation when forcing is suf
ciently weaker than the energy already present in the fl
Such dynamics seems possible only if the inverse energy
forward enstrophy cascades are ‘‘additive,’’ or mutua
‘‘transparent,’’ i.e., the responsible dynamical mechanis
are different and essentiallylinear for both cascades.

The k23 mechanism proposed here is clearly line
‘‘Transparency’’ has already been demonstrated numeric
by Maltrud and Vallis@4, Sec. 6#. The possibility of an in-
verse cascade of energy taking place along with a forw
cascade of enstrophy was also verified by Smith and Yak
@20#, who were concerned with the inverse energy cascad
the first place. Although their large-scale energy spectrum
slightly shallower thank23, their Fig. 13 shows half a de
cade of ‘‘enstrophy cascade’’ at the lowestk’s. Still lacking
is a theoretical model of the ‘‘agent’’ of inverse energy ca
cade, which should be linear but should not require ak25/3

scaling for its existence. In a numerical experiment set up
investigate the inverse energy cascade, Borue@21# has shown
that while ak25/3 scaling holds for the ‘‘background vortic
ity’’ that presumably effects that cascade, a steeper spect
k2p with 2,p,3 dominates the low wave numbers. H
showed that thek25/3 scaling pertains to the ‘‘background’
component even at lowk’s, which strongly corroborates th
present argument that the energy and enstrophy casc
must be linearly independent. In view of the analysis p
sented here, his argument that the nearlyk23 scaling of the
overall spectrum, which he observed at lowk’s, is due to the
presence of coherent structures is seen to be specific to
isotropic setup. It seems that a linear superposition of sp
tra, implicit already in the Maltrud and Vallis derivation@14#
of the cross-over wave number betweenk23 andk25/3 scal-
ing, should result whenever there are sources of both
mentation and sufficiently strong~as in@21#! and sufficiently
weakly correlated small-scale energy input.
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