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Direct numerical simulations of two-dimension@D) incompressible Navier-Stokes turbulence can model
large-scale atmospheric dynamics when driving and dissipation cover wide ranges of length scales. Natural
assumptions for the 2D energy balance lead to the rokustvorticity spectrum k=27, length scalg
observed in the atmosphere. Scalingkispace is related to hyperbolicity of large-scale 2D flow in physical
space. The mechanism of this scaling has similarities with a recent model of dissipative self-organized
criticality.

PACS numbeps): 47.27.Eq, 94.10.Lf, 05.40.Ca, 05.6%

[. INTRODUCTION reviewed briefly below. The important point in the present
case is that dinear theory is sufficient, without any linear-
The kinetic energy spectrum of atmospheric motion scale&zing assumptions to be made. This seems unusual in turbu-
like k~3 with the spatial wave numbég for both longitudi-  lence theory. All relevant theoretical arguments found in the
nally and azimuthally averaged spectra, at lengthscaleterature are collected and supplemented in several aspects
(0.3-3)x10° km [1,2]. Structure functions and flux rates in Sec. IV. A review of 2D DNS articles in Sec. VI offers
evaluated from a large set of aircraft flight data sH@Mhat  further justification of the assumption of linear interaction
this is consistent with an enstrophy cascade in twopetween large-scale strain and small-scale vorticity, and sug-
dimensional turbulenc&DT). Kraichnan3] has shown that gests that thé&3 scaling of the enstrophy cascade toward
an ingrtial range dominated by su_ch a cascadle should display, 41 scales and the 53 scaling of the energy cascade from
a k™ energy spectrum, or equwalentlyzla enstrophy  ,nse same small scales can coexist as if they were linearly
spectrum, where the enstrophy dendity »*/2 andw is the j,anendent fluxes. Such a picture seems even more unusual

scal_ar vorticity in a two-dimensional flpw. K_raichnan’s origi- in turbulence theory, despite the long recognized “nonlocal-
nal idea was qf a narrow band forcing with the enstrophyity,. (in wave number space, or “locality” in physical space
cascade occurring at wave numbers larger than those of for(af 2DT transfer processes '

ing, and with ak ~> spectrum determined by inverse energy The “universality of k- noise” has recently attracted

Casc?‘de at smaller wave_numbers. But the a_tmospheri_c ®Huch attention in the theory of dissipative self-organized
e[ggy is knowr(2] to scale in exaCtlgfgthe opposite way, With ¢ic systemgDSOCSS$. A close correspondence is estab-

K atsmallerwa\{e number.s ak'd at larger ones. More-. lished in Sec. V between the linear aspects in the evolution
over, the a_lssumptlon of an inertial range where b_Oth forcm_gbf spectra in 2DT and in a recent more abstract DSOC model
and damping can be considered negligibly small in comparl;f,ystem, which also displays robust! scaling. It can there-

S?n W't?] m_ertlal iﬁects Ihs' rr;ather questlorllat}le m(;he case "0 ore be said that the atmosphere of our planet is yet another
atmospheric motion, which is vigorously forced over a example of that universality.

lengthscales involved in it.

B. Relation to previous results

A. Present results The two key points in the explanation kf ! scaling are

In Sec. lll it is argued on the basis of observations from(1) nearly linear dynamics of small-scale vorticity with re-
extensive direct numerical simulatio®NS) of 2DT that a  spect to advection by 2DT velocity an@ dominance of
k™! enstrophy range obtains robustly, even when the forcindayerlike structures at small spatial scales. The latter is illus-
includes or is included in the scaling range of wave numbersirated in Fig. 1, which is a vorticity snapshot from one of the
Such a range must still be “nearly inertial,” in the sense thatpresent DNS. The importance of filamentation in 2DT was
any forcing effects have to be small, but not at all negligible,noticed long ago in DNS of atmospheric dynamics models
when compared with the amount of enstrophy in the mode§l]. It has been recognized as the mechanism of enstrophy
on which they act. The equations and forcing scheme for theascade by Batchel@4] and Kraichnar3]. (They have con-
present DNS are described in Sec. Il. The novelty is thesidered it important in 3D turbulence as wil6].) DNS of
forcing wave number band. 2DT [7,8] at higher-resolution (40%p than used here, but

To explain this robustness and to show that it still repre-forced at the lowest few wave numbemshich is the cur-
sents an enstrophy cascade to larger wave numbers as Lintntly standard setgphave produced &~ ! enstrophy spec-
borg[2] found from his data, the dynamical mechanism un-trum, over roughly one octave of wave numbers. Gdigh
derlying the scaling is identified as the stretching of materiahoted the massive presence of layerlike vorticity structures.
volumes, which correlate strongly with vorticity in high- Both 2DT theory and DNS related to enstrophy cascade
Reynolds-number two-dimensional turbulence. The idea thaand thek~* range assume forcing over a band of wave num-
stretching is the generator of turbulence is very old; it isberskr=0(1) where the smallest resolved wave number in
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nism of frontogenesis. A set of exact solutididd] for vor-
ticity gradients driven by large-scale stagnation flow allows
more rigorous modeling of filaments in the present “ran-
domly advected vorticity” variant of Kraichnan’s theory.

II. DYNAMICAL MODEL

Results reported here are for quasigeostrop{s)
B-plane scalar vorticity dynamics. In the QG approximation
[12] the large-scale height-averaged motions are small devia-
tions from a global balance between atmospheric pressure
and the Coriolis force due to rotation of the Earth. When the
largest scales of interest are of order Xn, the Coriolis
term can be linearized into g-term. A random force over
somebroad band of spatial frequencies crudely models the
cumulative effect of a multitude of different factors, e.g.,
convection, gravity-wave instabilities, topography. A linear
damping term models the combined effect of all dissipative
mechanisms effective at the numerically resolved scales,
e.g., boundary layer friction or radiation. The nonlinear dy-
namics immediately generates scales below the resolvable
ones; this flux is disposed of by an arbitrarily chosen hyper-
FIG. 1. Instantaneous vorticity in rum (see the middle bold Viscous term. The dynamics over a domain periodic in each

line in Fig. 2 and Table)l of the spatial coordinates, andx, is governed by
[0i+ v(— V) + 0,01+ v,05]w=Bv,+f, (1)

DNS k,i,=1 and dissipative-scale wave numlxge-1. The ' e 2

problem with this classical forcing is that it insists on the (v1,02)=(d5,— ) (—V?) o, 2

existence of an inertial range of wave numbers, where forc-

ing and damping can be neglected. So far it has been shown A f(Xy , X0,t) = —y F+09(X1, X5, 1), (3

that ak ™! scaling obtains only under such conditions. As
already noted, these restrictions are both too strong and toghere V2=a§+ a%; the damping modeb(L)=vy+ v, L™
unrealistic for the atmospheric case. has constani,v,,>0; the order of(hypepviscosity m=1
The classical theory of isotropic turbulence is presenteds integer. The random stirring forck follows a popular
entirely in Fourier space, so it can reflect the importance ofnodel[13]: The Langevin equatiof8) with memory due to
coherent structures in physical space only through specifithe damping factoy>0 is driven by a Gaussian white noise
scalings like thek™* one studied here. Batchelor's three- g. When integrating numerically with time steft, relevant
dimensional passive scalar scaling thefy and later Kra-  parameters are the forcing range boukgs k., a normal-
ichnan’s theory of random advection of a passive sddlar ized forcing amplitudego=(g)/y, and a memory factog,
in arbitrary dimension, which will be adapted here to de-=1-dty.
scribe the 2D vorticity scaling, come in a representation that The system(1)—(3) is a rather general example of an
employs both spectral and physical space, with statistical aizgompressibléNavier-Stokes-likewo-dimensionatlynamical
guments implied in the transition between them. At the basigystem. It reproduces some key features of global-scale at-
of these theories is the concept of filamentary small-scalgnospheric dynamics1) dominance at the largest scales of
structure which results from average stretching. Batchélpr  zonal flow[14] due to theB-term, (2) filamentation, and3)
assumed nonzero average large-scale strain to derive the the k2 energy spectrum scaling, which is our subject here.
scaling for a passive scalar spectrum in the convective-
dissipative range, while Kra_\ichnan showed t_hat st_retching Ill. NUMERICAL RESULTS
occurs on the average even if the average strain vanishes. We
find that in 2D Kraichnan’s result can be obtained even with- We now argue that, in order to predict an enstrofbry
out assuming isotropy, so it extends to, e@rplane turbu- passive scalarcascade and its direction one needs to verify
lence. only the following conditions(1) dominance of kinetic en-
Even if it vanishes on the average, the velocity strain inergy contentover its input/output rate, an@) conservation
2DT divides the flow into regions of elliptic and hyperbolic of the scalar on each fluid particle by the nondissipative and
large-scale flow. A comment on the role of the former isunforced dynamics. Clearly, conditidg) is satisfied by Eq.
given in Sec. VI. The latter has special significance in 2DT:(1); it is specific for 2D systems. Conditiofl) is weaker
A converging large-scale flow induces strong vorticity gra-than requiring an inertial range; it allows forcing and damp-
dients (filamentation; the gradients then induce large-scaleing anywherdn physical and wave number space, as long as
shear. This leads us to the oldest models of frontogenesiedistribution of fluxes by inertial effects is fast.
[10], which consider instabilities in a 2D simple shear or Our main numerical result is the observation from DNS
stagnation flow. Such large-scale motions then sustain ththat a nearly statistically steady state with well-defiked
otherwise three-dimensional and spatially localized mechaenstrophy spectrum obtaiasvayswhen condition(1) holds.
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TABLE |. Parameter ranges used in DNS.

B Yo Vm m % g1 Kp Ke

Minimum O 104 10! 1 104 0 1 4
Maximum 10 10? 10° 12 0.4 0.99 220 250

RunA 0 2x10°® 1 10 102 0.83 112 225
RunM 0 101 40 10 10! 0.99 112 125
RunS 0 104 10 10 10! 0.83 220 225

Here “well defined” means up to two decadeskinfor 512
spatial resolutior{ [7,8] report smaller ranges at higher reso-
lution). Technically, condition(1) implies two restrictions:
(1) that the initial enstrophy spectrum falls offlat1 faster

_1 . . . .
thank™", and(2) the forcing amplitude(g) (which is the FIG. 2. Evolution of enstrophy spectrum in ruSs(top), M
Same at any wave nl_meer for the scheme used fer¢f)  (middle), andA (bottom). Thick lines: initial time(dotted and latest
is small compared with the enstrophy contenkatO(1). record(solid). Data are compensatgdorizontal lines correspond to

Independence of forcing details and of the requirement fok=1) and vertically shifted by arbitrary rescaling factors:
an inertial range has been verified by obtaining the sameo 3(S),7.5M), 163(A).
scaling, after transients of nearly the same duration, from a
large variety of run parameters: the damping model and forcscaling range. The idea that small-scale vorticity is advected
ing “memory time” were varied, and forcing was applied in in 2D similarly to apassive scalamoes back at least to
one ortwo bands, with amplitudes selected nearly at will, butTaylor (for a recent review and original numerical employ-
independent ok in each band. Different forcing bands were ment of this idea, sefl5]). For the cases of nearly inviscid
used: (1) only at low wave numberk=0O(1) (classical vortex merger, decaying turbulence, and wave numbers
casg, or (2) only at high wave numberk=0(kg)," or (3)  above the forcing range in a narrow band-forced 2DT with
only in a narrow band of wave numbers<k<ky “in the  strong input, i.e., in violation of restrictiof®), detailed nu-
middle” of the resolved range, d#) over nearly thevhole  merical verification has been givéh6]. Our present results
range of resolved scaleghis case is qualitatively closest to suggest that in a statistically quasi-steady-state satisfying re-
modeling atmospheric dynamjcs strictions(1) and (2), vorticity is advected in that way il
Initial vorticity fields were randomly generated to match wave numbers, even if forcing isot narrow band.
one of a few prescribed initial spectra, all dominated by
large-scale motions. A substantial number of runs was
needed to explore the portion of parametric space specified

in the upper half of Table I. Details about this parametric Here we adapt Kraichnan’s theory of random advection of
study will be omitted, since only the qualitative result is of passive scalarf9] to the advection by 2DT of any scalar
interest here: Thé scaling results in all cases in which conserved on fluid elements. In the inviscid limit, vorticity
both forcing and damping remain below some empiricalinot only its small-scale partis such a scalar. Kraichnan
threshold, which is close to the upper boundsioendgo i considers advection by a white-noise velocity field of arbi-
Table | when initial energies al®(1). trary (intege) dimensionD=2, and derives the™ ! scaling
To illustrate the qualitative independence of the final out-on the basis of several assumptions, but without reference to
come from the forcing details, the spectral evolution for anonzero average strain. He first shows tisatropytogether
fe_vv representative runs is shown in Fig. 2. Forcing was apyith incompressibilitylead to positive average stretching of
plied at different wave number bands:(extreme small-  material lines, although the strain tensor vanishes on the av-
scale narrow bandyl: moderately small-scale narrow band, erage. Therefore, material elements are stretched, on the av-
A: broadban@l The classical forcing case is omitted. Theseerage, into “thin sheets” of dimensiod — 1. He then intro-
three runs were started from the same initial field, with enyyces a convenient but arbitrary model of the cross-sectional
ergy concentrated arournid=4, and advanced with the same profile of the scalar gradient across those sheets, choosing
k|nd Of hyperViSCOSity. Table | |iStS the parameter ValueS. them to Correspond to an input Centered at a ﬁxed wave
The universality ofc™* scaling has now to be explained number, and then studies the time evolution of his model.
without reference to an inertial range, becauge-0 for all  For an ensemble of such sheets, and using the time-
k, and DNS have shown that the location and width of thegependent average and dispersion of the line stretching rate,
forcing band is of no relevance and may overlap with thene then computes the spectrum in a way similar to Batch-
elor's [5]. Here we have to relax the requirements that the
velocity be isotropic, that it be white-noise ércorrelated in
The highk forcing scheme is traditionally used to produce the time (and the related time dependence of line stretching sta-
k=5 energy scaling of the inverse 2DT cascade, and noktfe  tistics), and that vorticity input have a fixed characteristic
energy scaling of the forward enstrophy cascade as done here. Tiength scale. The arbitrary model of filamentary structure is
crucial difference is that, to simulate an inverse cascade, an initidlo be replaced by one that is a solution to the dynamical
field is picked up with “insufficient” energy or none at all. equations.

IV. ADVECTION OF SMALL-SCALE VORTICITY
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A. Average stretching by random advection namics. The filamentation of vortex blobs continues until

Kraichnan's derivation employs in an essential way gthey are so thin that further stretching is countered by vis-

white-noise assumption on the velocity field, which is clearlyCoSity. Their “natural” shape can be approximated by
irrelevant as a model of two-dimensional motion, whosedissipative-scale solutions similar to the Burgers vortex tube
spectrum is dominated by large-scale modes. His commer@d layer solutions, which are popular models for filamen-
on this point is a reference to a proof for more general statary (tubelike and layerlikevorticity structures abundant in
tistics, given earlier by Cockgl7]. The proof is only for three-dimensional turbulence.
D=3; it uses incompressibility and isotropy. Below follows  Here follows a summary of the derivation jil]. The
a sketch of its 2DT analog needed here. first step is to findsteady statsolutions describing the exact

A material line elementl (0), when advected for a time balance betwee(®) large-scale strain, modeled by a stagna-
intervalt by an incompressible 2DT flow, when viewed in a tion flow, (u,v) =S(—Xx,y) in local coordinates, antb) dis-
Lagrangian frame moving with its center, appears mappedipationv(—V?). In the solutions, the profile of sheets is a
into 81(t)=U&1(0). Here detU)=1 and W=U'U is a function only of their cross-sectional coordinate, aligned
symmetric matrix with eigenvalues~',w>0. Transition  with the directionx of compressional strain. In 2DT, steady
from the Lagrangian frame to the orthogonal eigenvectoktatevorticity layerscannot be found. A “stretched vector”
frame of Wis a solid rotation, determined in 2D by a siggle field is needed as the analog of 3D vorticity. This turns out to
angle 9-2 The ar;alog of Cocke’s Eq(f) for 2D is | be thelLaplacian of velocity Steady profilesh(x) for that
=[81(t)[%/] 1 (0)] f(COSH)ZWJF(S'n 6)w™". The logarith- component of the field which is along the direction of posi-
mic stretching rateu= —log(1)/2 can be bounded by noting tive strain are exact analogs of the Burgers vorticity layer
that —log is a convex function: 2= (cosé)’logw 1) solutions in 3D. For Newtonian viscosithi(x) is Gaussian.
+(sin 6)%log(w); equality impliesw=1. For m>1 it is even more localized in Fourier space, and

Now consider arensembleof line elements. Since any oscillatory (but not sinusoidalin x space, with algebraic
ol(0) is equally probable with its copy rotated by decay afx|—c.
wl2, {logw)=(logw *))=0. Thus A=(u)>0 when the In the next step, these steady profilés/](x) are used to
standard deviation(w)>0. ForD =3 there are several’s. construct self-similar solutions, which model the process of
In order to have the lower bound @nvanish on the average, Stretching as adjustment, exponential in time, of their ampli-
one integrates with respect to sevef, then averages, then tude and length scale until their cross-sectional scale satu-
assumes isotropy to get dlbgw)'s equal. FoD =2 there is  rates aD(Kq ) whereky = v/\. Clearly, such solutions can
onew and isotropy is not required. be disrupted by a dissipative-scale forcing, as can be the case

This is corroborated by the well-known fact t}*ﬁ{p|ane with atmospheric dynamiCS. Moreover, the time to reach a
turbulence also producés *scaling. In the present series of Steady state depends on the kind of small-scale dissipation.
DNS, results similar to those in Fig. 2 were also obtained forTherefore, no universal behavior can be expected for

a 8 effect comparable to the total initial energy, again fordissipative-scale dynamics. In any case, the vorticity is
different forcing bands and other run parameters. stretched into stripes of various thickness, with sharp bound-

aries of thicknes©(ky ).

B. Thin sheets

. . . . C. Ensembles
Kraichnan’s next assumptid®] is that the characteristic

scales of the spatial variation of average strain are much Following Kraichnan[9] again, consider an ensemble of
larger than the average thickness of the vorticity sheetdilaments created with theame shapat thesame timebut
Therefore a small-scale fluctuation with scalar variance speawith varyinga andb,, and at differenk(0). Averaging over
trum [cf. his Egs.(3.4) and (3.5)] given at timet=0 by  such an ensemble requires knowledge about the distributions
Ep(ap,bo:k,0)=aybof,(kby), with characteristic cross- of the initial parameters and of strain histories. In the case of
sectional scalé, and amplitudea, determined by the nor- forcing in a narrow band and with fixed amplitude, which is
malization [ f,(k)dk=1, will keep its shape nearly un- relevant to some of the DNS reported above, one may ap-
changed while adjusting its characteristic lenghtift) proximately assume uniform distributions over narrow inter-
=I(t)b, according to the experienced strain history:vals for botha and b,. The distribution densityP(u) is
Ep(k,t)=aybf,(kb). For an infinitesimal material line ele- unknown; Kraichnan postulated it to be normal. Rectilat
ment 51 (t) centered atx(t) and moving in a strain field  B(u)dm=A>0, and rescal@=\u, soP—P. If sheets
S(x,t), that history is represented Qy(t)=[(S(x(t),t)dt.  in the ensemble are statistically independent, their total con-
So far, only incompressibility and the separation of scalesribution to the spectrum is approximately
between strain and vorticity were assumed, and only a single
“thin sheet” was considered. (apbo)eoe(ap) oe(b)(Ep(1,1K))s.

To estimate correctly thie™ *scaling range in Eq$5) and
(6) below, one needs to know what are the actual typical
cross-sectional profiles. Kraichnan assumed the form of 2gteady state turbulence implies time-independ®t). Kraich-
sheets to beinusoidal Although the scalar advection prob- nan's[9] focus is the evolution of single material line statistics, so
lem is linear and so any profile is admissible as input, ita time dependence dfw) appears in his analysis; his additional
seems natural to focus on filaments having their cross seavhite-noise assumption givéguy)=t\, and o(uy) =t*?0 with
tions spatially localized and compatible with the flow dy- constants\y,0>0.
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Subscriptsk,S denote averaging respectively over the en-The integral above may be approximated by
semble of sheets and over the total stretching of materiaP(0) [JH({)d{ if |A(nukq)| <No(u), whereny=0(1) is
linesl =eM*. The latter has its probability density completely large enough, sayy =5, in order that botrf h(g)dg and
determined by thelunknown, centereddensity P of u: Ui

Ps()=P(x—\)(dl/dp). Denoting bp={(bo)e , I "h({)d¢ are negligible Wherh(g) is the Fourier trans-
(Ep(1,1K))s~ fe)\,ufp(e)\ﬂkb YP(u—N)du. It remalns to form of any of the.steady profilds(x). Then the int.egral in
average over the distribution of admissible shafggsand in ~ EG. (5) has negligiblek dependence, andlar* scaling ob-
the case of abroadband forcing, over input scaleg,  t&ins, approximately over the wave number range
weighted by corresponding forcing amplitudes. Irrespective
of the _pro_bability measures arising in these two integrations ke MW <k<k, e ), kH:e’xzkd()\,vm). (6)
over distributions of filament parameters, there can be found
an approximate dependené¢ on the self-similar profile
shaped, and on the parametrization of sheets based an
such that

Evaluation of the average and dispersion of the logarithmic

stretching of material lines in 2DT is beyond the scope of the

present article. Qualitativelyg(u) grows if the energy-
containing rangd k=0(kg), wherekg is the peak of the

<E(k)>“f eMH(k e *)P(u—N)du. (4)  spectrum of the velocity spectrum shifts to larger lengths.

One may conjecture a scaling law logélog (ke /ky), expect-

Kraichnan avoided in his analysis the two averaging step#$g o(u)>1 in 2DT.

discussed here, by insisting on a singlésrcing (fixed by),

and on a fixedsinusoidal form of f,.

The prevailing population of ;’'s would consist of “thin
sheets,” well approximated by the Burgers-vortex-layer type The QG dynamical model system studied so far was seen
of solutions discussed already. Each of them, and theréfore to produce & ! spatial spectrum for the advanced fiedd
as well, will have a Gaussian or faster falloff kn With {  under “mild” forcing. This behavior can now be compared

V. RELATION TO A DSOCS MODEL

=keM and A =log(Q)—log(K)—\?, with a forced DSOCS model syster8] that also produces
. ~1 spectra under a rather general setup. The evolution rules
(F(K))~(\k) "1 J' P(A(ONH(0)dZ ). (5) for the ong—d|men5|onal version of that model can be recast
0 as follows:
|
a(u,b+db,0)=€ed(wn)f(b)db+lim a(u,b,t), (7)
t—oo
a(u,b,t+dt)—a(u,b,t) Ma(u+duw,b,t)—2IMa(u,b,t) +1Ta(u—dw,b t)
dt __VEHa(M,b,t) 2/(1_VE) (8)
|
Here 5(0)=1 but 6(u)=0 for u=1; [la=a if 0<a<e, Relaxation by Eq(7) can be interpreted as straining of

butITa=0 otherwise,<e<1 andvg<<1 are positive con- material elements or vorticity patchéslobs. Blobs can be
stants. The random fordewas chosen uniformly distributed assumed to appear initially with no preferred shape and ori-
over [0,1); it is effective only at one end of the “lattice” entation, and with average aspect ratio close to L0,
©=0,1,2... M>1, so there is a predefined “direction of the vorticity associated with each blob decays. As folding
propagation” forIAE(b)=E#a(,u,b,oo) called “energy” in  occurs near stagnation points, filaments can be lumped, for
the model. Advancement ip and then inb is effected in  statistical purposes, into blobs of larger characteristic size
discrete steps, fixed adlpu=db=1. Fourier transform of and smaller aspect ratio. Thus well-stretched blobs “vanish”
a(u,b,0) in b gives spectral densitieB(u,k). Numerical —at a rate~ e while unstretched blobs are “generated” at a
experimentg 18] showed that all cases with.=0.01 were  similar rate atu=0. Equation(7) remains formally un-
found to scale aE(k)~k ™. The explanation offered ifi18]  changed after Fourier transformatiob—¢k). Whendp,dt

was based on the observation that the spectrunefe and  —0 and (1- vg)cu'? and if the effect offI can be ne-
for any fixed u scales likeE(u,k)~e**H(k e#*) with glected, it represents a linearly damped diffusion process.
constantA>0. Note that this is the form of the function This is a direct analogy of Kraichnan's stochastic diffusion
whose expectation is given by E¢). No explanation for of material elementgblobs “created” with characteristic
such an asymptotic form was given, only fits ferfrom  length scalé. IT prevents diffusion and decay of blobs with
simulation date[18]. Assuming that> ,E is dominated by very weak vorticity. This means sustaining a weak multipli-
these u=>1 contributions, E(k)~fE(u,k)du  cative forcing of 2DT, i.e., modeling the weak background
~(k\)"LfH({)dZ. Our Egs.(5) and (6) imply the same, turbulence which does not belong to coherent vortices or
whenP(0)=1. Enstrophy in our case is clearly the analog ofvorticity layers. DNS with weak broadband forcing have
DSOCS “energy.” shown that it is sufficient to suppokt * scaling in 2DT. In
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summary, a 2DT analog ofg should lump together three ing. This implies the presence of an inverse cascade of en-
small parameters: &(u),vq, ande. ergy from the forcing range toward the largest scales which
A naive interpretation of Eq(7), admissible only when are only damped linearlyi>0). But this cascade is not
2DT forcing is narrow band, is to useas a label of a “slow  allowed to show up in spectra or in averaged nonlinear trans-
time,” as originally meant in the DSOC model, and not for fer functions, i.e., the usually observéd®? scaling is to-
injection length scale. This can be associated with evolutionally overwhelmed by filamentation when forcing is suffi-
of spectra, as in Fig. 2, which occurs on a time scale slowiently weaker than the energy already present in the flow.
compared with the exponential thinning of layers. Not only Such dynamics seems possible only if the inverse energy and
the restriction on forcing range, but also relating temporal tdorward enstrophy cascades are “additive,” or mutually
spatial spectra, are problems with this interpretation.‘transparent,” i.e., the responsible dynamical mechanisms
Whetherb>1 means time or length, it can be associatedare different and essentiallinear for both cascades.

with a large energy available ia(b). In the u>1 range, The k™3 mechanism proposed here is clearly linear.
assumed decisive for the spectrum, no energy is added aff@ransparency” has already been demonstrated numerically
ITa=0 becomes important; a neatlyindependent“quasi- by Maltrud and Vallis[4, Sec. 8. The possibility of an in-

steady”) state can be expected there. Changes enforced byerse cascade of energy taking place along with a forward
Eq. (7) will therefore be relatively small wheh,u>1—an  cascade of enstrophy was also verified by Smith and Yakhot
assumption strengthened ley<1, and analogous to condi- [20], who were concerned with the inverse energy cascade in
tion (1) in the 2DT discussion. A linear response to forcing, the first place. Although their large-scale energy spectrum is
a(u,b,%)—a(u,b,0)=A(u)db, is expected in that param- slightly shallower thark ™3, their Fig. 13 shows half a de-
eter range; it corresponds to the approximation by passiveade of “enstrophy cascade” at the lowédss. Still lacking
scalar dynamics of the evolution of vorticity blobs in 2D. is a theoretical model of the “agent” of inverse energy cas-
Adding —a(u,b+db,) on both sides of Eq. 7, then taking cade, which should be linear but should not requite &3
db—0 and Fourier transforming, leads ték E(u,k)  scaling for its existence. In a numerical experiment set up to
=A(u). Thus,k~! scaling may follow from Eq(7) without investig'ate the invers'e energy cascade, Bf2d¢has shown
necessitating the particular form of E¢g). But then the that while ak~>* scaling holds for the “background vortic-

analogy with turbulent advection in 2D would be lost. ity” that presumably effects that cascade, a steeper spectrum
k™P with 2<p<3 dominates the low wave numbers. He
VI. CONCLUDING REMARKS showed that thé~ > scaling pertains to the “background”

component even at lo's, which strongly corroborates the

The offered explanation df ! scaling is based entirely present argument that the energy and enstrophy cascades
on consideration of vorticity filamentghin stripes. It may  must be linearly independent. In view of the analysis pre-
seem surprising that the coherent vorti¢€y/s) that have sented here, his argument that the neérly scaling of the
attracted so much attention in the study of 2DT are allowedverall spectrum, which he observed at l&is, is due to the
to contribute only indirectly, if at all, by sustaining, in the presence of coherent structures is seen to be specific to the
gaps between themselves, hyperbolic flow regions wher@otropic setup. It seems that a linear superposition of spec-
filaments are stretched. In Kraichnan's theory large-scalgra, implicit already in the Maltrud and Vallis derivatigh4]
strains, and thus CVs, are not required. The DNS discussesf the cross-over wave number betwderf andk > scal-
above(see alsd4, Fig. 3)) showed that CVs may not domi- ing, should result whenever there are sources of both fila-
nate the flow, whetheB=0 or not, and & * scaling will  mentation and sufficiently stron@s in[21]) and sufficiently
still hold under restriction$l) and(2). Even if 3=0, the CV  weakly correlated small-scale energy input.
contribution to the spectrum for wave numbers above the
energy-containing range is negligible: Ohkitqahd] showed
that the total contribution from regions with elliptic flow,
including all CVs, scales as 2. This work is a contribution to Project No. JSPS-

The present article claims the existence of statisticalyRFTF97P001101 of the “Research for the Future” program
steady states witk ! enstrophy scaling over the full range funded by the Japanese Society for Promotion of Science.
of wave numbers. In particular, the enstrophy cascade shoulgtimulating discussions with Dr. T. Ishihara are gratefully
be sustainable by a small-scale forcing, which seems surprigknowledged.
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